skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "deBoer, R J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2026
  2. Free, publicly-accessible full text available June 1, 2026
  3. Here we report on the direct measurement of the resonance strengths of the E R lab = 647 keV and 1842 keV resonances in the Ca 40 ( p , γ ) Sc 41 reaction. At novae temperatures, 0.2 < T 9 < 0.7 , the Ca 40 ( p , γ ) Sc 41 reaction is governed by the low energy resonance at E R lab = 647 keV , whereas the E R lab = 1842 keV resonance serves as a normalization standard for nuclear reaction experiments within the astrophysically relevant energy range. For the E R lab = 647 keV resonance, we obtain a resonance strength ω γ = ( 2.51 ± 0 . 09 stat ± 0 . 22 syst ) meV , with an uncertainty a factor of 2.5 smaller than the previous direct measurement value. For the E R lab = 1842 keV resonance, we obtain a resonance strength ω γ = ( 0.148 ± 0 . 006 stat ± 0 . 013 syst ) eV , which is consistent with previous studies but deviates by 2 σ from the most recent measurement. Our results suggest Ca 40 to be a strong waiting point in the nucleosynthesis path of oxygen-neon (ONe) novae. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  4. : The C 12 ( α , γ ) O 16 reaction, determining the survival of carbon in red giants, is of interest for nuclear reaction theory and nuclear astrophysics. A specific feature of the O 16 nuclear structure is the presence of two subthreshold bound states, (6.92 MeV, 2 + ) and (7.12 MeV, 1 ), that dominate the behavior of the low-energy S factor. The strength of these subthreshold states is determined by their asymptotic normalization coefficients (ANCs), which need to be known with high accuracy. : The objective of this research is to examine how the subthreshold and ground-state ANCs impact the low-energy S factor, especially at the key astrophysical energy of 300 keV . The S factors are calculated within the framework of the R -matrix method using the code. Our total S factor takes into account the E 1 and E 2 transitions to the ground state of O 16 including the interference of the subthreshold and higher resonances, which also interfere with the corresponding direct captures, and cascade radiative captures to the ground state of O 16 through four subthreshold states: 0 2 + , 3 , 2 + , and 1 . To evaluate the impact of subthreshold ANCs on the low-energy S factor, we employ two sets of the ANCs. The first selection, which offers higher ANC values, is attained through the extrapolation process [Blokhintsev , ]. The set with low ANC values was employed by deBoer []. A detailed comparison of the S factors at the most effective astrophysical energy of 300 keV is provided, along with an investigation into how the ground-state ANC affects this S factor. : The contribution to the total E 1 and E 2 S factors from the corresponding subthreshold resonances at 300 keV are ( 71 74 ) % and ( 102 103 ) % , respectively. The correlation of the uncertainties of the subthreshold ANCs with the E 1 and E 2 S ( 300 keV ) factors is found. The E 1 transition of the subthreshold resonance 1 does not depend on the ground-state ANC but interferes constructively with a broad ( 9.585 MeV ; 1 ) resonance giving (for the present subthreshold ANC) an additional 26 % contribution to the total E 1 S ( 300 keV ) factor. Interference of the E 2 transition through the subthreshold resonance 2 + with direct capture is almost negligible for small ground-state ANC of 58 fm 1 / 2 . However, its interference with direct capture for higher ground-state ANC of 337 fm 1 / 2 is significant and destructive, contributing 27 % . The low-energy S E 2 ( 300 keV ) factor experiences a smaller increase when both subthfreshold and the ground-state ANCs rise together due to their anticorrelation, compared to when only the subthreshold ANCs increase. Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  5. Free, publicly-accessible full text available November 1, 2025
  6. Free, publicly-accessible full text available September 1, 2026
  7. Abstract The interplay and correlation between the $$^{22}$$ 22 Ne $$(\alpha ,\gamma )^{26}$$ ( α , γ ) 26 Mg and the competing $$^{22}$$ 22 Ne $$(\alpha ,n)^{25}$$ ( α , n ) 25 Mg reaction plays an important role for the interpretation of the $$^{22}$$ 22 Ne $$(\alpha ,n)^{25}$$ ( α , n ) 25 Mg reaction as a neutron source in the s - and n -processes. This paper provides a summary and new data on the $$\alpha $$ α -cluster and single-particle structure of the compound nucleus $$^{26}$$ 26 Mg and the impact on the reaction rate of these two competing processes in stellar helium burning environments. 
    more » « less